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We consider the length of an occupied crossing of a box of size 
[0, n ] x  [0, 3hi a-1 (in the short direction) in standard (Bernoulli) bond per- 
colation on 7/~ at criticality. Let [snl be the length of the shortest such crossing. 
It is believed that Isnl ~ n ~ +c in some sense for some c > 0. Here we show that 
if the correlation length ~(p) satisfies ~(p) ~< (Pc - P)-~ for some v < 1, then with 
a probability tending to 1, Isnl .~ Clnl/V(logn) -<l-~l/v. The assumption ~(p)~< 
C3(pc-p)  -~ with v< 1 has been rigorously established <1'2) for large D, but 
cannot hold C3~ for D = 2. In the latter case, let ]1~[ be the length of the 
lowest occupied crossing of the square [0, n] 2. We outline a proof of 
Pp~([l~[ ~< n I +*)~ n -= for some c, ~ > 0. We also obtain a result about the length 
of optimal paths in first-passage percolation. 

KEY WORDS: Critical percolation; chemical distance; tortuosity; occupied 
crossings of a box; lowest crossing of a square. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

W e  cons ider  s t a n d a r d  (Bernou l l i )  b o n d  p e r co l a t i on  o n  Z D, D >~ 2, in  which  

al l  b o n d s  are  i n d e p e n d e n t l y  o c c u p i e d  wi th  p r o b a b i l i t y  p a n d  v a c a n t  wi th  
p r obab i l i t y  1 - -  p. The  c o r r e s p o n d i n g  p r o b a b i l i t y  m e a s u r e  o n  the  conf igu ra -  
t i ons  of occup i ed  a n d  v a c a n t  b o n d s  is d en o t ed  by  Pp. The  c lus te r  of  the  

ver tex  x,  C ( x ) ,  consis ts  of  all  vert ices which  are  c o n n e c t e d  to  x by  a n  
occup ied  p a t h  o n  Z D. (An occup ied  p a t h  is a n e a r e s t - n e i g h b o r  p a t h  o n  Z D, 
al l  of  whose b o n d s  are occupied . )  By c o n v e n t i o n  we a lways  i n c l u d e  x in  
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C(x). For any collection A of vertices, [A] denotes the cardinality of A. 
The percolation probability is 

O(p) = Pp(IC(O)] = m) (1.1) 

and the critical probability is 

Pc = Pc(~'D) = sup{p: O(p) = 0} 

It is well known that 0 < Pc < 1. 
We still do not understand very well what the configuration of 

occupied and vacant bonds looks like for the system at criticality. Many 
questions about the critical system have been phrased in terms of the 
incipient infinite cluster, e.g., what is its dimension, what is the distribution 
of the ant in the labyrinth, how does chemical distance along the incipient 
infinite cluster behave, and what are the electrical resistance properties of 
the incipient infinite duster (see refs. 4-10 and references cited therein)? 
Most of these have incomplete answers at best. 

It is not even proven that 0 (pc )=0  in all dimensions (only for 
D = 2 (1~ or large D ~ are full proofs known), and the very definition of the 
incipient infinite cluster needs more work. (~2) However, since it is believed 
that O(pc)= 0, long occupied paths should have low probability at Pc in 
some sense, and therefore one expects such paths to be very tortuous. 
Another way to express this is that one expects the chemical distance along 
the incipient infinite cluster to be much larger than the Euclidean distance. 
If l is the chemical distance along the graph of occupied bonds between the 
points at Euclidean distance r, then one expects l to grow like r d=i" for some 
exponent drain- This exponent has been estimated numerically by several 
groups (see, for instance, refs. 9 and 10). Theorem 1 below considers the 
length of the shortest occupied crossing of a large rectangular box between 
opposite faces, assuming such a crossing exists. Presumably this length, 
too, behaves like n a=i~ as n, the "size" of the box, become large. 

We need some notation. For any two sets of vertices A and B we write 
~ / ~  B for the event that there exists an occupied path from some vertex in 
A to some vertex in B; A ~E B is the event that such a path exists in the 
region E. We set 

B(n) = I - n ,  n]D 

and its boundary or surface is 

aB(n) = {xeZD: Ilxll =n} 
where 

[Ixll :=  max IxA for x = ( x x  ..... xo) 
l <~i<~D 



Tor tuos i t y  o f  Occupied Crossings of  a Box 601 

For a path r, Jr[ denotes its length, i.e., the number of edges in n. C~ will 
always stand for a strictly positive finite constant, whose value is of no 
significance to us. In fact the value of Ci may change from appearance to 
appearance. 

From a simple subadditive argument (see ref. 13, Theorem 5.10) it 
follows that for fixed p < p~ and some constants 0 < C~ < oe and some 
function ~(p) 

Cln 1 -De-n/r Pp(O ~ OB(n)) ~ C2n D- le-"/r (1.2) 

~(p) is called the correlation length. It is a basic tenet in the theory of 
critical phenomena that 

~ ( P ) ~ ( P c - P )  -~, PTPc (1.3) 

for some critical exponent v which only depends on D. Here and in the 
following, A ~ B means log A/log B tends to 1 in the appropriate limit [-as 
P$Pc in (1.3)]. Hara (2) proved (1.3) for D large with v =  1/2. However, 
numerical data support (1.3) for all D, and with v < 1 for D >I 3. However, 
it is known (see ref. 3, especially Theorem 3 and Corollary 2) that for 
D = 2 ,  (1.3) can only hold for a v > l ;  the true value of v in D = 2  is 
believed to be (14) v = 4/3. 

We write 

Fo=Fo(n)= {0} x [0, 3n] z'-~ and Fn=F, (n )=  {n} x [0, 3n] D-1 

for the "left" and "right" faces of the box 

D~ : =  [0, n] x [0, 3n] z~-~ 

We denote by sn the shortest occupied path from Fo(n) to F,(n) in D~, if 
such a path exists; [s~[ is the length of s~. 

Theorem 1. If 

r ~ C3(Pc - p)-V for some v < 1 (1.4) 

and some constant C3 and p close to Pc, then there exist constants C4 and 
C5 such that 

/ //1/(1-- v)~ 
Pp~( [Sn[ <~ k]Fo(n) *--, F~(n)) <~ C4n 2D - 2 exp / - Cs 

\ k,,/(1 It): (1.5) 
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for all k~n .  In particular, (Is.I)p< := the conditional expectation of Is, I, 
given that there exists a crossing from F0 to F,  in D, (at Pc), satisfies 

(Is,  I )pc ~> C6nl/V(l~ n) -(1 - ~)/v (1.6) 

for some C6 > 0. 

Remarks. (i) We use the box D, instead of the simpler cube [0, n] D 
because of the technical reason that we know (ref. 15, Theorem 5.1 and 
Corollary 5. i ) that 

Dn 
Pp<(Fo(n) < > F.(n)) t> C7 > 0 (1.7) 

for some constant C7 > 0. We have no proof of the analogue of (1.7) when 
D., Fo(n), and F.(n) are replaced by the cube [0, n] z~ and its left and fight 
faces, respectively. The result (1.7) allows us to condition on 

z~. > r . (n)}  

shows that if we do not insist on 

Pp<(there exists an occupied crossing in [0, n] D from its 
left to its fight face and of length ~< k) 

~< C4 exp ( - C5 
nnl/[ 1 

The result (1.5) also implies for any vertex v that 

Pp<(there exists an occupied path from 0 to v of length ~< k) 

i lv l l l / ._~)x I ~< C4 Ilvlt~D-2exp -C5 ~17Zz77-.)), k~< Ilvll (1.9) 

(iii) An estimate like (1.6) can also be obtained from the following 
argument, which is partly nonrigorous. Let p,  denote the number of 

(ii) 

(1.8) 

pivotal bonds for the event 

Dn 
{Fo(n) , , F.(n) } 

If this event occurs, then these pivotal bonds are just the bonds which have 
the property that changing their state from occupied to vacant makes 

{r0(n) , o. , r . (n)}  
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fail. In the terminology of ref. 5 or ref. 7, p. 114, these are the red bonds. 
Every occupied crossing from Fo(n) to F~(n) in D,  must go through all 
these pivotal edges, so that Is~l >i p~. Now it has been argued on a non- 
rigorous basis that p ,  should be of the order n 1/v when ~(p)..~ ( p c - p )  -~ 
(see ref. 7, p. 114). This would lead to a conclusion very similar to (1.6). 

Unfortunately Theorem 1 is useless when D = 2, since then (1.4) can- 
not hold for v < 1 (see ref. 3, Theorem 3 and Corollary 2). It is believed (~4) 
that v = 4/3 for D = 2. For  D = 2 we can, however, say something about the 
length of the lowest occupied crossing of the square [0, n] x [0, hi .  (The 
lowest crossing of a square has been used by many people; see, for instance, 
refs. 16 and 17; a rigorous definition is given in the Appendix of ref. 18.) 
Let l. be the lowest crossing of [0, n ] x  [0, n'l and 11.1 its length. 

T h e o r e m  2. Let .~'~ be the event that there exists an occupied 
crossing from the left edge to the right edge in [0, n ] x  [0, n].  Then there 
exist constants e, c > 0 and C1 < oo such that 

Ppc(rl.I<<.nl+Cl~,,)<~C~n-~, n>~l (1.10) 

It is not clear that Is, I/ll, t --> 0 in probability. It is conceivable that rs,] 
and I/~1 are of the same order, or even if ]s,I/ll, I ~ 0 it may be the case that 

Ppc(Is~l~n-~ll,  l l ~ ) ~ l  for every 8 > 0  (1.11) 

If (1.11) is indeed the case, then Is, I and rl, l would have the same critical 
exponent, whenever these critical exponents exist. 

The proof of (1.10) is quite involved, and we restrict ourselves to a 
brief outline in Section 3. 

We next turn our attention to first-passage percolation on Z D. To each 
bond e of 7/D we associate a nonnegative random variable X(e), which 
represents the time it takes fluid to flow through e. We assume that 
{X(e): e~  Z ~ } are independent and all have the same distribution F. For  
any path r which successively traverses the edges el,... , e~ we define its 
passage time as 

T(r) = i X(ei) 
i = 1  

The passage time from a vertex u to a vertex v is defined as the smallest 
passage time of paths from u to v; formally, 

T(u, v)=inf{T(r):  r a path from u to v} 
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Let 

am, n = T((m, 0 ..... 0), (n, 0,...)) 

bin, n = inf{T((m, 0 ..... ), (n, kz,..., ko): k2,..., kD e 7/} 

am,, is called a point-to-point passage time, and b,~,n a point-to-hyperplane 
passage time. It is well known (ref. 19, Chapter 5, or ref. 20, Sections 2 
and 3) that if 

f x elF(x) = E { X ( e ) }  < ~ (1.12) 

then 

1 1 
lira -ao,  n= lim -bo, n = #  a.s. and in L1 (1.13) 

n ~ o z  n . ~ o o  n 

for some constant I~ = #(F, D), the so-called time constant. We call r a route 
for a,,,~ (for bin, n)  if r is a path from (m, 0 ..... 0) to (n, 0 ..... 0) [to some 
point (n, k2,..., kD), respectively] with T(r )=  am, n (b  . . . .  respectively). The 

b . shortest length of such a route is N~,,, or Nm,~. i.e., 

N ~  =inf{  T(r)I: r is a route for Om,n}, O=a or b 

It is believed that 

1 NO l i m -  0,~=2 a.s. and in Lx (1.14) 
n ~ o o n  

for some constant 2 = 2(F, D). In general this conjecture is still open, but 
is was shown to hold (21"22) when 

F(O) = P{X(e )  = 0} > pc(7? D) 

Some bounds for liminf and limsup of n - I N  ~ o,~ are known (ref. 19, 
Chapter 8, and ref. 23). Let us specialize further to distributions F for which 

supp(F) = {0} ~ [1, ~ )  (1.15) 

Then any X(e) which is not zero must be at least one. If the conjecture 
0 (pc)=0  holds, then for any F which satisfies (1.15) and 

r (0)  = p c  (1.16) 
we must have 

a0,, ~ oo and bo,, ~ ~ a.s. (as n ~ oo) 

We do have some bounds in the other direction. If (1.16) holds, then 

1 1 
n b~176 a.s 
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(as n--* oe) (ref. 20, Theorem 6.1). If 

P{X(e)  = O) = 1 - P{X(e)  = 1 } = Pc (1.17) 

[so that supp (F )=  {0, 1 }], then (24) for all e > 0 

P(bo,,, <~ n ~) >1 P(ao,,, ~< n *) ~ 1 (1.18) 

The proof of ref. 24 can be sharpened to show that under (1.17), there 
exists some constant C < oe such that 

P(ao, n ~< expI-C(log n) m]  for all large n) = 1 (1.19) 

When D = 2 one even has 

P(ao,,, <~ C log n for large n) = 1 (1.20) 

(see ref. 25, Section 3.4, for a somewhat weaker statement). We expect 
again that under (1.15) and (1.16) the optimal routes for 0o, n must be very 
tortuous. They want to use as few edges e with X(e)/> 1 as possible; in 
order to avoid these edges, they may have to pass through many edges f 
with X ( f )  = 0. Thus it is reasonable to expect that n -  1No, n ---, oe in some 
sense. The next theorem confirms this under the hypotheses (1.4) and 
(1.17). 

T h e o r e m  3. Assume (1.4) and (1.17) hold. Then there exist 
constants c~, c > 0 and 0 < Ca, C2 < O0 such that 

P(N~ n~>l and O = a o r b  (1.21) 

2. P R O O F S  OF T H E O R E M  1 A N D  3 

Proof o f  Theorem 1. We can choose the configuration for given 
P < Pc by first choosing the configuration for Pc and then doing a second 
random experiment in which every occupied edge at Pc remains occupied 
(becomes vacant) with probability P/Pc[(Pc-  P)/P, respectively]. From this 
one obtains [-compare ref. (15), inequality (4.2)] 

pc(F0 , o. , F . ,  [s.I = l) 

>/P{ shortest occupied crossing at Pc has length l and stays occupied at p } 

>i ppc(Fo ' o. , F . ,  [s.] = l) 
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Hence by summing over l ~< k, for any k, and p < Pc 

ep(F o , --* F.)>~ epc(fo , , F., Is, I ~<k) (2.1) 

Since clearly 

{Fo, D n , F . } ~  U {v~,v+OB(n)} 
v~Fo 

(2.1), (1.2), and (1.7) imply, for any choice of k, 

Dn 
Ppc(lsnr < k I F o  , , L) 

{1  ~{pc) k 
<~ \ -CTJ\pJ  Z C2 nD-'e-"/r 

vo e Fo 

<-Csn2D-2exp{ kpC-pp ~-~P)} 

If (1.4) holds, and we restrict ourselves to �89 Pc ~< P < Pc, we have 

Dn Ppc(ls.r ~<k[Fo ' , F.)  

<~ C4nZD- 2 exp[ C9k(pc _ p) _ C~ in(pc- p)~] 

(1.5) follows by taking p c - p =  (nv/C3C9k) u~l-V) A (�89 (which mini- 
mizes the exponent in the last display). (1.6) is immediate from (1.5). | 

Proof of Theorem 3. Fix 0 < e < 1 - v. Then for 0 = a, b 

P(N~176 Oo,.<n')+P(Oo,.>~n ~) (2.2) 

By the result of ref. 24 (see in particular the hypothesis Ho, which is 
eventually proved), we have for large n 

P(bo,, >t n ~) <<. P(ao,, >>- n ~) <<. C6e-C7n#2 (2.3) 

for some constants C6 = C6(e) and C7 = CT(e)> 0. Furthermore, if r is a 
route for 0o, n, then r contains exactly 0o, . edges e with X(e)= 1. Thus, r 
can be broken up into 7 :=  0o, ,+1 subpaths rl,...,rr, each of which 
contains only edges e with X(e )=0 ,  with the exception of its last edge, 
which may have a corresponding X equal to 1. For any path s, set 

d(s) = II (endpoint of s ) -  (initial point of s)ll 
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Since the distance between the endpoint and initial point of r is at least n 
(because r is a route for 0o,,), we must have d(sg) >1 n/7 = n/(Oo,, + 1) for at 
least one i~<v. Moreover, if rrl = t h e  length of r is ~<k, then r, and hence 
r~, is contained in [ - k ,  k]D. Of course also [r~] ~< ]r[. Therefore, 

{N~ Oo., <n ~} 

c U 
x,y~ [ - - k , k ]  ~  Yll ~ n l - ~ - - 2  

It follows from this and (1.9) that 

P(N~ <.N k, 0o,~ < n ~) 

{3 a path s from x to y with Is[ ~< k 
and with X(e) = 0 for all edges e in s} 

Z Pp~(3 an occupied path s from 
x'Y~[-k,k]'O'l[x--Y[ ])nl-E-2 x t o  ywi th  Isl ~<k) 

~< (2k+ 1) D ~ C 4 [lyl[ 2D-2 exp (-C5 
]] yl[ 1/(1- ~)'] 

n l - e -  2 ~< [lyl[ ~<2Dk \ 

<~ C8 k4D-2 exp ( -C5 n~lkv/(l_v)-̀)/(l -v))] 

Now choose 

2(1 - v )  1 - v  
0 < e <  3 - v  ' f l=  2 

Then for 

k ~ rt (1 - ~ - ~)/v 

the right-hand side of (2.4) is at most 

C9 exp (-- -~ nr = C9 exp ( -  ~ n'/2 ) 

for large n. Thus (1.21) follows from (2.3) and (2.4) with 

1 -~-/~ 
l + c  . . . .  >1  

v 

(2.4) 

(2.5) 
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3. OUTLINE OF PROOF OF THEOREM 2 

Denote expectation with respect to Ppc by E, and let 

In n n n -]2 
Sn=  ~ 64,~+~--~J (3.1) 

Finally, let Iln ~ Sn[ denote the number of edges of l. in Sn. Then the three 
principal steps in the proof of Theorem 2 are the following: 

(a) E{ 1l~ ~ S~[ tLP,} i> n 1 + 2c for some c > 0 and n large. 

(b) E{II ,~S~I2]~n}<<.C2[E{II ,~Sn[]LPn}] z for some constant 
C2<  oo. 

(c) Deduction of (1.10) from (a) and (b). 

Heuristically, (a) seems to us the most important step. Its proof relies 
heavily on the methods of refs. 3 and 26. To prove (a), we begin with the 
following observation. We say that a vertex v = (vl, v2) is the last vertex o f  
l n on the vertical line {x = v 1 } if l n passes through v, but no longer intersects 
this line after v. Thus, if l, = (el,..., e,)  with el (e~) having one endpoint 
on the left (right) edge of [0, n ] x  [0, n], then v is the common endpoint 
of some ei and ei+l, and e~+~, e~+2,..., e~ have no other endpoints on 
{x=v~}. Each vertical line {x=v~} with O < ~ v ~ n  has exactly one last 
vertex of l n and it is easy to see that the expected number of last vertices 
of l, in Sn is at least C3n for some C3>0.  The difficult part of (a) is to 
show that for any v in the square Sn and some c > 0 

Pp~(l, passes through v] &an) 

>~ n2~Ppc(v is the last vertex of l~ on {x = v~ } t~e~) (3.2) 

Once one has (3.2), (a) follows, since then 

E { l l . n S . I  1s176 

n 2~ ~ Pp~(vis thelas tver texof l .  on { x = v ~ } l . ~ . ) ~ C 3  n~+2~ 
v~Sn 

The inequality (3.2) itself is proven by a method similar to the one in 
ref. 26. Consider the annulus 

A k ( v ) = v +  ( [ - - U ,  2k]2\(2 k - l ,  2k--1) 2) 

around v. If A k ( v ) ~  [0, n] 2 and if there exists a vacant "dual half circuit 
in the fight half of Ak(v)" (i.e., a vacant path on 2v2+ (1/2, 1/2) inside 
Ak(v) c~ {(x, y): x>~vl -- 1/2), which connects {v~} x I-v2+2 k-~, v 2 + 2  k] 
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I 

1 I 

t 

Fig. 1. Ak(v) is the annulus between the inner and outer squares. If the dashed "half circuit" 
in Ak(v) is vacant, then it prevents the occurrence of {v is the last v vertex of/n on {x=v~}}. 
In order to connect v to the right edge of [0, n] 2 (the dashed vertical line on the right) 
without hitting the dashed half circuit one has to reenter {x < v~ }. 

to {vl} x [ v 2 - 2  k, v 2 - 2  k - l ]  (see Fig. 1)), then v cannot  be the last  ver tex 
of In on  {x = vl }. As Fig. 1 indicates, any  occupied pa th  f rom v to the right 
edge of [0, n]  a [which lies outside Ak(V)] must  enter  the region {x < vl } 
again  in order to avoid  the vacant  half  circuit. There  are at least C4 log n 
values of  k with Ak(v) c [0, n]  2, and  for  each such k there is a condi t ional  
p robabi l i ty  at least C5 > 0 of  having a vacant  half circuit. This yields (after 
considerable  technical work)  that  

Ppc(V is the last vertex of  In [ s 

~< (1 - C5) c'l~ Pp<(l,, passes through v l ~ . )  

This  is of  course the same as (3.2). 
F o r  (b) we use a rguments  of  ref. 3, pp. 147, 148. We first prove  tha t  

Pp~(l. passes th rough  v [ ~ . )  

is of  the  same order  of  magni tude  as 

Pp<(V is connected by two edge disjoint occupied paths  to the 
boundary  of [0, n]  2 and one of  the points v +  ( + 1 / 2 ,  + 1 / 2 )  
is connected by a dual vacan t  pa th  to the boundary  of 
[0, n] 2) 

8 2 2 / 7 0 / 3 - 4 - 7  
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This then leads, for two points v and w in S,  with Ilv-wt[ ~>k, to the 
estimate 

Ppc(l. passes through v and w[ La.) 

Ppc ( l .  passes through v l ~e.) ~< 

x Pm(lk passes through ( [ -  k], [k]) s (3.3) 

The sum over all v and w in S. of the left-hand side in (3.3) can then be 
shown to be only of order 

[E{I/.nS.I I ~ . } ]  2 

from which (b) follows. 
It is a simple consequence of Schwarz' inequality (see ref. 27, Exercise 

1.3.5) that (a) and (b) together imply 

Ppc ( ll, n S, l >~ ~nl + Zc l s 

>>" P,c II. nS.l>~E{ll,  nS.I ILa.}ls 

1 Ee{F. nSnl I~ .}]  2 1 
>>" -4 E{ll. nS.I21s >>'-~2 (3.4) 

The right-hand side of (3.4) is bounded away from 0, but does not yet tend 
to 1. To obtain the full result (1.10), one needs to find a number of disjoint 
squares, to each one of which one can apply (3.4). Step (c) consists of 
finding such squares (at random locations) of size n 1 - r  for a suitable V > 0. 
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